用微信扫描上方二维码添加

或打开微信搜索编辑老师微信号添加:

期刊汇官方网站,咨询热线:400-803-1233
期刊汇期刊汇期刊汇期刊汇
半月刊
分享到:

数学通讯 2010年20期

Bulletin of Mathematics(Wuhan)

主管单位:中华人民共和国教育部
主办单位:华中师范大学;湖北省数学学会;武汉数学学会
国际刊号:0488-7395
国内刊号:42-1152/O1
审稿时间:1个月内
全年订价:¥ 408.00
创刊:1933
类别:社会科学II
周期:半月刊
发行:湖北省
语言:中文
起订时间: 2019年01月
曾用名:中等算学月刊
出版社:行政事业单位类
邮编:430079
主编:彭双阶
邮发:38-23
库存:300
  • 数学发现学习及其促进

    作者:胡典顺; 期刊:《数学通讯》 2010年20期

    <正>1引言随着建构主义的兴起,其教学理论在数学教育中影响日甚.让学习者掌握学会学习的技能成为时代的要求和挑战,"发现学习"因此受到了越来越多的重视.在新一轮数学课程改革中,数学发现作为数学课程的教学方式、教学目标、教学理念贯穿于整个数学课程标准中,注重数学发现是数学新课程的鲜

    参考文献:
    [1]新课...

  • 基础教育新课程改革的障碍研究

    作者:贺子华;梅松竹;冷平; 期刊:《数学通讯》 2010年20期

    <正>1问题提出2003年,安徽省在初中开始实施《全日制义务教育数学课程标准(实验稿)》,2006年又参加了普通高中新课程改革.由于新课程的实施与原有的教育环境、教育观念、评价标准、教育者自身的条件等都可能存在着矛盾与冲突,因而中学数学教师对新课程的适应过程存在一定的障碍.
    基金:安徽省高校青年教师科研项目——新课程理...

  • 为学生设计作业,让作业布置更有效——新课程背景下高中数学作业设计的问题与思考

    作者:钱军先; 期刊:《数学通讯》 2010年20期

    <正>随着新一轮课程改革的深入开展,《高中数学课程标准》中的教学理念对广大教师的教学行为产生了深刻的影响,立足课堂、关注学生、努力提高教学的有效性受到了普遍的重视,课堂教学的面貌发生了根本性的变化.相比而言,数学作业作为教学工作的一个重要环节,未能和课堂教学的改革同步进行,制约了

    参考文献:
    [1]新...

  • 从中学的视角看数学文化观念下的数学教学

    作者:赵士元;张国棣; 期刊:《数学通讯》 2010年20期

    <正>数学文化是以数学科学为核心,以数学的思想、精神、方法、技术、理论等所辐射的相关文化领域为有机组成部分的动态系统.如何把数学文化转化为教育形态,以便"寻找数学进步的历史轨迹,激发对于数学创新源动力的认识,接受优秀文化的熏陶,提高文化素养和创新意识".作为中学一线教师,笔

    参考文献:
    [1]关于数学...

  • 一道高考试题引发的探究与思考

    作者:丁益民; 期刊:《数学通讯》 2010年20期

    <正>我们来看看2007年高考江苏卷第19题:如图1,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x~2相交于A,B两点.一条垂直于x轴的直线,分别与线段AB和直线l:y=-c交于点P,Q.(1)若(?)·(?)=2,,求c的值;(2)若点P为线段AB的中点,求证:QA为此抛物线的切线;

  • 以“情”悟“理” “情”“理”交融——基于合情推理的“三元均值不等式”的教学设计

    作者:杨育池; 期刊:《数学通讯》 2010年20期

    <正>合情推理是发展数学,学好数学的重要方式之一.过去,中学数学教学十分强调演绎推理的严谨性,过分渲染逻辑推理的重要性,而忽视生动活泼的合情推理,使人们误认为数学是一门纯粹的演绎科学.数学家波利亚指出:"数学有两个侧面,一方面它是欧几里得式的严谨科学,从这方面看,数学像是一门系统的演绎科学;但另一方面,创造过程中的数学

  • 例谈发展课本例习题的常用策略

    作者:张俊; 期刊:《数学通讯》 2010年20期

    <正>"源于课本,高于课本"已经成为高考命题的一条重要原则.这一原则启示我们要重视课本例习题的发展,演绎试题的命制过程和思维轨迹,切实淡化学生对高考试题的畏惧感,以激发兴趣,启迪思维,提高能力.下面笔者以苏教版必修课本中的几道例习题为例谈谈发展问题的常用策略.

    参考文献:
    [1]高考命题设计思路探析—...

  • 圆锥曲线中的等差数列

    作者:舒金根; 期刊:《数学通讯》 2010年20期

    <正>定理1设A,B是椭圆x~2/a~2+y~2/b~2=1上不同的两点,直线AB分别与x轴、y轴相交于P(m,0)(m≠±a,m≠0)、Q(0,n)(n≠±b,n≠0).(1)若M是直线x=a~2/m上任一点,且直线MA,MP,MB的斜率存在,则直线MA,MP,MB的斜率成等差数列;

    参考文献:
    [...

  • 一道高考填空题的再探究

    作者:代银; 期刊:《数学通讯》 2010年20期

    <正>1试题(2009年安徽省高考数学文科第14题)在平行四边形ABCD中,E和F分别是边CD和BC的中点,且(?)=λ(?)+μ(?),其中λ,μ∈R,则λ+μ=点,且(?)=λ(?)+μ(?),其中λ,μ∈R,则λ+μ=____.文[1]作者刘瑞美老师通过深入挖掘2009年安徽省高考数学文科试卷第14题的背景与渊源,运用平...

  • 抛物线的另一“顶点”与“焦点”

    作者:宋广志;邢友宝; 期刊:《数学通讯》 2010年20期

    <正>抛物线与椭圆、双曲线都是圆锥曲线,然而焦点所在的对称轴上,椭圆、双曲线都有两个顶点,两个焦点,抛物线却只有一个顶点,一个焦点.椭圆、双曲线有关双顶点、双焦点的性质,在抛物线上似乎就行不通了.抛物线的另一顶点、焦点到哪里去了呢?本文对此进行探究,并进一步由椭圆、双曲线有关双顶点、双焦点的一些性质得出与之对应的抛物线的

  • 从解直角三角形到解直角四面体——立体几何的一个重要“题根”

    作者:陈忠怀; 期刊:《数学通讯》 2010年20期

    <正>1 30年高考催生的重要题根在数学解题中,我们将那些来源于基础,又高于基础;提炼于解题实践,又能够广泛应用于解题实践的优秀试题称之为题根.本文所论述的直角四面体及基本性质,就是30年高考催生出的一个重要题根.如图1,将长方体截下一个角锥,我们称截得的这个角锥四面体P-ABC为直角四面体.直角四面体...

  • 例谈“巧解”与“巧合”的辩证关系

    作者:傅学军;王庆丰; 期刊:《数学通讯》 2010年20期

    <正>在数学解题的过程中,简洁、高效的解法是学生和教师共同追求的目标.但有时,一个看似简便的解法到底是"巧解"还是"巧合",往往如雾中花看不清楚,"巧解"与"巧合"可以说是数学解题学中容易混淆的两个不同概念."巧合"是指已知条件在特定数值的情况下,用...

  • 探讨小题教学 提升问题附加值

    作者:高德龙; 期刊:《数学通讯》 2010年20期

    <正>很多老师都对学生说"小题小做",从考试挣分的角度来说,这个说法值得提倡.但从提高学生思维能力和教师教学水平的角度来说,这种提法似乎有点片面.俗语说:要给学生一碗水,老师必须要有一桶水.又有人说,要给学生一杯水,教师自己应该有源源不断的常流水.数学教师在教学中应该引导学生"小题小做",寻找得分捷径;引导学生解题后反...

  • 圆锥曲线对偶元素性质再探

    作者:邹生书; 期刊:《数学通讯》 2010年20期

    <正>我们知道:点P(x0,y0)和直线l:Ax0x+Cy0y+D(x+x0)+E(y+y0)+F=0是圆锥曲线C:Ax2+Cy2+2Dx+2Ey+F=0(A2+C2≠0)的一对极点和极线.容易验证:圆锥曲线的焦点和对应准线是圆锥曲线的一对极点和极线.可以验证"类焦点"和"类准线"也是圆锥曲线的一对极点和极线.

  • 两个代数不等式猜想的推广

    作者:杨学枝; 期刊:《数学通讯》 2010年20期

    <正>文[1]曾提出五个代数不等式猜想,文[2]指出其中有两个猜想成立,并给出了证明,同时举反例否定了其中三个猜想.在本文里,笔者对已证明成立的两个不等式分别予以推广,并给出简捷的证明.为读者便于阅读,我们先给出文[1]中的两个猜想.文[1]中的猜想1若a,b,c为满足a+b+c

    参考文献:
    [1]对...

  • 双曲线渐近线上几个有趣的最大值点

    作者:玉邴图; 期刊:《数学通讯》 2010年20期

    <正>笔者对双曲线渐近线上的点作了一些研究,得到了几个有趣的最大值点,现说明如下,供读者学习参考.定理P是双曲线x~2/a~2-y~2/b~2=1(a>0,b>0)渐近线上的一点,F是双曲线焦点,A是与F相应的顶点,E是与F相应的准线与x轴的交点,P与A,E,F均位于y轴的同一侧,e是双曲线离心率,...

  • 用向量的矢量积求二面角的大小

    作者:林建波; 期刊:《数学通讯》 2010年20期

    <正>在用法向量求二面角大小时,求出二面角的两个半平面的法向量夹角余弦后,会遇到解方程组求法向量的坐标及判断所求的角是锐角还是钝角的问题,前者运算烦琐,而后者判断时往往比较困难.设n1,n2分别为平面a,β的法向量,二面角a-l-β的大小为θ,向量n1,n2的夹角为ψ,则有θ=π...

  • 直角三角形内有关外接圆半径的结论

    作者:谢星恩;林世中; 期刊:《数学通讯》 2010年20期

    <正>参考献[1]中,探讨了直角三角形内有关内切圆半径的一些结论,同样的,对于直角三角形外接圆也有相应的结论.结论1在Rt△ABC中,∠ACB=π/2,CD为斜边上的高线,(?)I、(?)I1、(?)I2分别为Rt△ABC、Rt△ADC、Rt△BCD的外接圆,半径分别为R、r1、r2,则r12+r22=R2.

  • 浙江七年高考立体几何自主命题回顾与前瞻

    作者:沈恒; 期刊:《数学通讯》 2010年20期

    <正>从2003年最后一次采用全国卷至今,浙江省高考数学实施自主命题已经走过七个年头,作为一线教师自然非常关注,尤其是知识板块分量较重的立体几何.我们可以看到,浙江卷立体几何命题是一个稳中求变、变中求进的改革过程,既保留了传统推理论证的内容,又不断充实了向量的内容.保留传统推理论

    参考文献:
    [1]高...

  • 一道自主招生不等式试题的初等解法探究

    作者:赵思林;李兴贵; 期刊:《数学通讯》 2010年20期

    <正>问题设a,b,c∈R~+且a+b+c=1,求证:(a+1/a)(b+1/b)(c+1/c)≥1000/27①此题即为2008年南京大学自主招生试题,文[1]给出了三个证明,但都属于"超纲"方法.完全用高中教材上的知识证明①,既困难又有意思.本文先用三元算术—几何平均值不等式给①一个比较简短的证明.

    参考...

  • 我为高考设计题目

    作者:孙强民;罗志强; 期刊:《数学通讯》 2010年20期

    <正>题46设函数y=f(x)对任意的实数x,都有f(x)=2f(x+1),当x∈[0,1]时,f(x)=27/4x~2(1-x).(1)已知n∈N~*,当x∈[n,n+1]时,求y=f(x)的解析式;(2)求证:对于任意的n∈N~*,当x∈[n,n+1]时,都有|f(x)|≤1/2~n;(3)对于函数y=f(x)(x∈[0,...

  • 对2010年上海高考数学理科第23题的深入研究

    作者:卫福山; 期刊:《数学通讯》 2010年20期

    <正>2010年上海高考数学理科试题较往年平稳很多,大部分都是比较常规的问题,但平凡中蕴含着不平凡,比如理科第23题:已知椭圆Γ的方程为x~2/a~2+y~2/b~2=1(a>b>0),点P的坐标为(-a,b).(1)若直角坐标平面上的点M、A(0,-b)、B(a,0)满足(?)=1/2((?)+(?)),求点M的...

  • 一道高考题的推广与引申

    作者:玉云化; 期刊:《数学通讯》 2010年20期

    <正>2010年全国高考全国卷Ⅰ文科第(8)题:E,F是等轴双曲线x~2-y~2=1的左右焦点,P是双曲线上的一点,∠EPF=60°,则|PE|·|PF|=()(A)2.(B)4.(C)6.(D)8.这道题设计新颖,难易适中,并且反映了圆锥曲线焦点三角形两条焦半径的积与夹角的关系,这两个基本量是焦点三角形中非常重要的几何量,故...

  • 从浙江省一道高考题谈立体几何折叠问题

    作者:张艳; 期刊:《数学通讯》 2010年20期

    <正>(2010年浙江省理科数学20题(Ⅱ))如图1,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=2/3FD=4.沿直线EF将△AEF翻折成△A′EF,使平面A′EF⊥平面BEF.点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A′重合,求线段...

  • 证明无理不等式的转化策略

    作者:戴志祥; 期刊:《数学通讯》 2010年20期

    <正>无理不等式的证明问题经常出现在国内外各级各类数学竞赛及各种数学期刊的"数学问题"中,证明无理不等式虽然方法灵活多变、因题而异,但总以一定的转化为基础,通过转化简化问题,沟通与已知不等式之间的联系,使问题获解.可以说,证明无理不等式的过程是一个恰到好处的转化过程.为此,本...

  • 巧妙构造二次函数 破解数学竞赛题

    作者:田辉; 期刊:《数学通讯》 2010年20期

    <正>二次函数是一类常见的重要函数,因此,一些数学竞赛题常可以通过构造二次函数的途径来解决.解题中发现:巧妙地构造二次函数,常会使一些数学难题迎刃而解,有时甚至会收到出奇制胜、事半功倍的解题效果.本文着重谈谈构造二次函数在解竞赛

    参考文献:
    [1]巧用向量的一个性质简解一类数学竞赛题[J]. 武增明....

  • 一道新加坡国家队选拔考试题的证明与推广

    作者:蒋明斌; 期刊:《数学通讯》 2010年20期

    <正>2008年新加坡数学奥林匹克国家队选拔考试第一天第二题为:设正实数x1,x2,…,xn满足x1x2…xn=1,求证:1/(n-1+x1)+1/(n-1+x2)+…+1/(n-1+xn)≤1①本题为一成题,曾作为1999年罗马尼亚数学奥林匹克国家队选拔考试第一天第四题,笔者见到的证明都很繁琐,本文给出三个证明并给出其推广....

  • 关注生活细节,感悟数学思想

    作者:唐锐光; 期刊:《数学通讯》 2010年20期

    <正>数学新课程标准倡导:让学生感受数学与现实生活的密切联系,即数学源于生活、寓于生活、用于生活.能否从现实生活细节中感悟数学思想,能否用数学思想与方法观察、思考现实生活的现象,分析、解决现实生活的问题,反映出一个人是否能"数学地看问题"和"数学地思维",体现了一个人数...

相关标签
服务与支付

加载页面耗时0.101秒